NCERTworld.com

NCERT Book Solutions (Class - 6 to Class - 12)

## Class - 12 : Mathmatics

### Mathmatics - Chapter No. : 9

**Differential-Equations**

**Exercise 9.6**

For each of the differential equations given in Exercises 1 to 12, find the general solution:

**Question :1:
dy/dx + 2y = sin x**

**Answer :**

The given differential equation is:

dy/dx + 2y = sin x

This is in the form of dy/dx + py = Q, where p = 2 and Q = sin x

Now, I.F = e^{ꭍp dx} = e^{ꭍ2 dx} = e^{2x}

The solution of the given differential equation is given by the relation,

y(I.F) = ꭍ(Q * I.F.) dx + C

⇒ y e^{2x} = ꭍ sin x * e^{2x} dx + C ………..1

Let I = ꭍ sin x * e^{2x} dx

⇒ I = sin x * ꭍ e^{2x} dx - ꭍ[d(sin x/dx * ꭍ e^{2x} dx]dx

⇒ I = sin x * e^{2x}/2 - ꭍ [cos x * e^{2x}/2]dx

⇒ I = sin x * e^{2x}/2 – (1/2) * cos x * ꭍ e^{2x} dx - ꭍ[d(cos x/dx * ꭍ e^{2x} dx]dx

⇒ I = sin x * e^{2x}/2 – (1/2) * [cos x * e^{2x}/2 - ꭍ {(-sin x) * e^{2x}/2]dx]

⇒ I = (sin x * e^{2x})/2 – (cos x * e^{2x})/4 – I/4

⇒ I + I/4 = e^{2x} (2 sin x – cos x)/4

⇒ 5I/4 = e^{2x} (2 sin x – cos x)/4

⇒ I = e^{2x} (2 sin x – cos x)/5

Therefore, equation 1 becomes:

⇒ y e^{2x} = e^{2x} (2 sin x – cos x)/5 + C

⇒ y = (2 sin x – cos x)/5 + C e^{-2x}

This is the required general solution of the given differential equation.

**Question :2:
dy/dx + 3y = e ^{-2x}**

**Answer :**

The given differential equation is:

dy/dx + 3y = e^{-2x}

This is in the form of dy/dx + py = Q, where p = 3 and Q = e^{-2x}

Now, I.F = e^{ꭍp dx} = e^{ꭍ3 dx} = e^{3x}

The solution of the given differential equation is given by the relation,

y(I.F) = ꭍ(Q * I.F.) dx + C

⇒ ye^{3x} = ꭍ (e^{-2x} * e^{3x}) dx + C

⇒ ye^{3x} = ꭍ e^{x} dx + C

⇒ ye^{3x} = e^{x} + C

⇒ y = e^{-2x} + Ce^{-3x}

This is the required general solution of the given differential equation.

**Question :3:
dy/dx + y/x = x ^{2}**

**Answer :**

The given differential equation is:

dy/dx + y/x = x^{2}

This is in the form of dy/dx + py = Q, where p = 1/x and Q = x^{2}

Now, I.F = e^{ꭍp dx} = e^{ꭍ dx/x} = e^{log x} = x

The solution of the given differential equation is given by the relation,

y(I.F) = ꭍ(Q * I.F.) dx + C

⇒ y * x = ꭍ (x^{2} * x )dx + C

⇒ xy = ꭍ x^{3} dx + C

⇒ xy = x^{4}/4 + C

This is the required general solution of the given differential equation.

**Question :4:
dy/dx + y * sec x = tan x (0 ≤ x ≤ π/2)**

**Answer :**

The given differential equation is:

dy/dx + y * sec x = tan x

This is in the form of dy/dx + py = Q, where p = sec x and Q = tan x

Now, I.F = e^{ꭍp dx} = e^{ꭍ sec x dx} = e^{log (sec x + tan x)} = sec x + tan x

The solution of the given differential equation is given by the relation,

y(I.F) = ꭍ(Q * I.F.) dx + C

⇒ y(sec x + tan x) = ꭍ tan x(sec x + tan x)dx + C

⇒ y(sec x + tan x) = ꭍ tan x * sec x dx + ꭍ tan^{2} x dx + C

⇒ y(sec x + tan x) = sec x + ꭍ(sec^{2} x – 1) dx + C

⇒ y(sec x + tan x) = sec x + tan x – x + C

This is the required general solution of the given differential equation.

**Question :5:
ꭍ _{0}^{π/2} cos 2x dx
**

**Answer :**

Let I = ꭍ_{0}^{π/2} cos 2x dx

⇒ I = [sin 2x /2 _{0}]^{ π/2 }

⇒ I = (1/2) * [sin π – sin 0]

⇒ I = 0

Hence, ꭍ_{0}^{π/2} cos 2x dx = 0

**Question :6:
x * dy/dx + 2y = x ^{2} log x**

**Answer :**

The given differential equation is:

dy/dx + 2y/x = x^{2} log x

This is in the form of dy/dx + py = Q, where p = 2/x and Q = x log x

Now, I.F = e^{ꭍp dx} = e^{ꭍ 2/x dx} = e^{2 log x} = x^{2}

The solution of the given differential equation is given by the relation,

y(I.F) = ꭍ(Q * I.F.) dx + C

⇒ y * x^{2} = ꭍ (x log x * x^{2})dx + C

⇒ x^{2}y = ꭍ x^{3} log x dx + C

⇒ x^{2}y = log x * ꭍ x^{3} dx - ꭍ[d(log x)/dx * ꭍ x^{3} dx]dx + C

⇒ x^{2}y = log x * x^{4}/4 - ꭍ[ 1/x * x^{4}/4]dx + C

⇒ x^{2}y = log x * x^{4}/4 – (1/4)ꭍ x^{3} + C

⇒ x^{2}y = log x * x^{4}/4 – (1/4) * x^{4}/4 + C

⇒ x^{2}y = x^{4} (4log x – 1)/16 + C

⇒ y = x^{2} (4log x – 1)/16 + Cx^{-2}

This is the required general solution of the given differential equation.

**Question :7:
x * log x dy/dx + y = 2/x log x**

**Answer :**

The given differential equation is:

x * log x dy/dx + y = 2/x log x

⇒ dy/dx + y/x log x = 2/x^{2}

This is in the form of dy/dx + py = Q, where p = 1/x log x and Q = 2/x^{2}

Now, I.F = e^{ꭍp dx} = e^{ꭍ 1/x log x dx} = e^{log(log x)} = log x

The solution of the given differential equation is given by the relation,

y(I.F) = ꭍ(Q * I.F.) dx + C

⇒ y * log x = ꭍ(2/ x^{2} * log x)dx + C

⇒ y * log x = 2 * ꭍ log x/x^{2} dx + C

⇒ y * log x = 2[ log x * ꭍ 1/x^{2} dx - ꭍ{d(log x)/dx * ꭍ1/x^{2} dx} dx] + C

⇒ y * log x = 2[ log x * (1-/x) - ꭍ {(1/x) * (-1/x)} dx] + C

⇒ y * log x = 2[-log x/x + ꭍ 1/x^{2} dx] + C

⇒ y * log x = 2[-log x/x – 1/x] + C

⇒ y * log x = -2[1 + log x/x]/x + C

This is the required general solution of the given differential equation.

**Question :8:
(1 + x ^{2})dy + 2xy dx = cot x dx (x ≠ 0)**

**Answer :**

The given differential equation is:

(1 + x^{2})dy + 2xy dx = cot x dx

⇒ dy/dx + 2xy/(1 + x^{2}) = cot x/(1 + x^{2})

This is in the form of dy/dx + py = Q, where p = 2x/(1 + x^{2}) and Q = cot x/(1 + x^{2})

Now, I.F = e^{ꭍp dx} = e^{ꭍ 2x/(1 + x2) dx} = e^{log((1 + x2))} = 1 + x^{2}

The solution of the given differential equation is given by the relation,

y(I.F) = ꭍ(Q * I.F.) dx + C

⇒ y * (1 + x^{2}) = ꭍ[ cot x/(1 + x^{2}) * (1 + x^{2})]dx + C

⇒ y(1 + x^{2}) = ꭍ cot x dx + C

⇒ y(1 + x^{2}) = log |sin x| + C

This is the required general solution of the given differential equation.

**Question :9:
x * dy/dx + y – x + xy cot x = 0 (x ≠ 0)**

**Answer :**

The given differential equation is:

x * dy/dx + y – x + xy cot x = 0

⇒ x * dy/dx + y(1 + x cot x) = x

⇒ dy/dx + y(1/x + cot x) = 1

This is in the form of dy/dx + py = Q, where p = 1/x + cot x and Q = 1

Now, I.F = e^{ꭍp dx} = e^{ꭍ (1/x + cot x)dx} = e^{log x + log(sin x)} = e^{log(x sin x)} = x sin x

The solution of the given differential equation is given by the relation,

y(I.F) = ꭍ(Q * I.F.) dx + C

⇒ y * (x sin x) = ꭍ(1 * x sin x)dx + C

⇒ y(x sin x) = x ꭍ sin x dx - ꭍ[d(x)/dx * ꭍsin x dx]dx + C

⇒ y(x sin x) = x(-cos x) - ꭍ{1 * ꭍ(-cos x) dx} + C

⇒ y(x sin x) = -x cos x + sin x + C

⇒ y(x sin x) = -x cos x/(x sin x) + sin x/(x sin x) + C/(x sin x)

⇒ y(x sin x) = -cot x + 1/x + C/(x sin x)

This is the required general solution of the given differential equation.

**Question :10:
(x + y)dy/dx = 1**

**Answer :**

The given differential equation is:

(x + y)dy/dx = 1

⇒ dy/dx = 1/(x + y)

⇒ dx/dy = x + y

⇒ dx/dy - x = y

This is in the form of dx/dy + px = Q, where p = -1 and Q = y

Now, I.F = e^{ꭍp dy} = e^{ꭍ-dy} = e^{-y}

The solution of the given differential equation is given by the relation,

x(I.F) = ꭍ(Q * I.F.) dy + C

⇒ x e^{-y} = ꭍ (y * e^{-y})dy + C

⇒ xe^{-y} = y ꭍ e^{-y} dy – [ ꭍ d(y)/dy * ꭍe^{-y} dy]dy + C

⇒ xe^{-y} = -ye^{-y} – ꭍ (-e^{-y})dy + C

⇒ xe^{-y} = -ye^{-y} + ꭍ e^{-y} dy + C

⇒ xe^{-y} = -ye^{-y} - e^{-y} + C

⇒ x = -y - 1 + Ce^{y}

⇒ x + y + 1 = Ce^{y}

This is the required general solution of the given differential equation.

**Question :11:
y dx + (x – y ^{2})dy = 1**

**Answer :**

The given differential equation is:

y dx + (x – y^{2})dy = 0

⇒ y dx = (y^{2} – x)dy

⇒ dx/dy = (y^{2} – x)/y

⇒ dx/dy = y – x/y

⇒ dx/dy + x/y = y

This is in the form of dx/dy + px = Q, where p = 1/y and Q = y

Now, I.F = e^{ꭍp dy} = e^{ꭍ1/y dy} = e^{log y} = y

The solution of the given differential equation is given by the relation,

x(I.F) = ꭍ(Q * I.F.) dy + C

⇒ xy = ꭍ (y * y)dy + C

⇒ xy = ꭍ y^{2} dy + C

⇒ xy = y^{3}/3 + C

⇒ x = y^{2}/3 + C/y

This is the required general solution of the given differential equation.

**Question :12:
(x + 3y ^{2}) * dy/dx = y (y > 0)
**

**Answer :**

The given differential equation is:

(x + 3y^{2}) * dy/dx = y

⇒ dy/dx = y/(x + 3y^{2})

⇒ dx/dy = (x + 3y^{2})/y

⇒ dx/dy = x/y + 3y

⇒ dx/dy - x/y = 3y

This is in the form of dx/dy + px = Q, where p = -1/y and Q = 3y

Now, I.F = e^{ꭍp dy} = e^{ꭍ-dy/y} = e^{-log y} = e^{log (1/y)} = 1/y

The solution of the given differential equation is given by the relation,

x(I.F) = ꭍ(Q * I.F.) dy + C

⇒ x * 1/y = ꭍ (3y * 1/y)dy + C

⇒ x/y = 3ꭍ dy + C

⇒ x/y = 3y + C

⇒ x = 3y^{2} + Cy

This is the required general solution of the given differential equation.

**Question :13:
dy/dx + 2y tan x = sin x; y = 0 when x = π/3**

**Answer :**

The given differential equation is:

dy/dx + 2y tan x = sin x

This is in the form of dy/dx + py = Q, where p = 2 tan x and Q = sin x

Now, I.F = e^{ꭍp dy} = e^{ꭍ2 tan x dx} = e^{ 2log |sec x|} = e^{log (sec2 x)} = sec^{2} x

The solution of the given differential equation is given by the relation,

y(I.F) = ꭍ(Q * I.F.) dx + C

⇒ y * sec^{2} x = ꭍ (sin x * sec^{2} x)dx + C

⇒ y * sec^{2} x = ꭍ (sec x * tan x)dx + C

⇒ y * sec^{2} x = sec x + C …………1

Now, y = 0 when x = π/3

⇒ 0 * sec^{2} π/3 = sec π/3 + C

⇒ 0 = 2 + C

⇒ C = -2

Put the value of C in equation 1, we get

⇒ y * sec^{2} x = sec x – 2

⇒ y = cos x – 2 cos^{2} x

This is the required general solution of the given differential equation.

**Question :14:
(1 + x ^{2})dy/dx + 2xy = 1/(1 + x^{2}); y = 0 when x = 1**

**Answer :**

The given differential equation is:

(1 + x^{2})dy/dx + 2xy = 1/(1 + x^{2})

⇒ dy/dx + 2xy/(1 + x^{2}) = 1/(1 + x^{2})^{2}

This is in the form of dy/dx + py = Q, where p = 2 tan x and Q = sin x

Now, I.F = e^{ꭍp dy} = e^{ꭍ 2xy/(1 + x2) dx} = e^{ log (1 + x2)} = (1 + x^{2})

The solution of the given differential equation is given by the relation,

y(I.F) = ꭍ(Q * I.F.) dx + C

⇒ y(1 + x^{2}) = ꭍ [1/(1 + x^{2}) * (1 + x^{2})^{2}]dx + C

⇒ y/(1 + x^{2}) = ꭍ 1/(1 + x^{2}) dx + C

⇒ y/(1 + x^{2}) = tan^{-1} x + C ………..1

Now, y = 0 when x = 1

⇒ 0 = tan^{-1} 1 + C

⇒ C = -π/4

Put the value of C in equation 1, we get

⇒ y/(1 + x^{2}) = tan^{-1} x - π/4

This is the required general solution of the given differential equation.

**Question :15:
dy/dx - 3y cot x = sin 2x; y = 2 when x = π/2**

**Answer :**

The given differential equation is:

dy/dx - 3y cot x = sin 2x

This is in the form of dy/dx + py = Q, where p = -3 cot x and Q = sin 2x

Now, I.F = e^{ꭍp dy} = e^{ꭍ -3 cot x dx} = e^{3 log|sin x|} = e^{log|1/sin3 x|} = 1/sin^{3} x

The solution of the given differential equation is given by the relation,

y(I.F) = ꭍ(Q * I.F.) dx + C

⇒ y/sin^{3} x = ꭍ[sin 2x * 1/sin^{3} x]dx + C

⇒ y cosec^{3} x = 2ꭍ[cot x * cosec x]dx + C

⇒ y cosec^{3} x = 2 cosec x + C

⇒ y = -2/cosec^{2} x + C/cosec^{3} x

⇒ y = -2 sin^{2} x + C sin^{3} x ………….1

Now, y = 2 when x = π/2

⇒ 2 = -2 + C

⇒ C = 4

Put the value of C in equation 1, we get

⇒ y = -2 sin^{2} x + 4 sin^{3} x

⇒ y = 4 sin^{3} x - 2 sin^{2} x

This is the required general solution of the given differential equation.

**Question :16:
Find the equation of a curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.**

**Answer :**

Let F (x, y) be the curve passing through the origin.

At point (x, y), the slope of the curve will be dy/dx

According to the given information:

dy/dx = x + y

⇒ dy/dx - y = x

This is a linear differential equation of the form:

dy/dx + py = Q, where p = -1 and Q = x

Now, I.F = e^{ꭍp dy} = e^{ꭍ (-1) dx} = e^{-x}

The solution of the given differential equation is given by the relation,

y(I.F) = ꭍ(Q * I.F.) dx + C

⇒ y(I.F) = ꭍ(x * e^{-x}) dx + C

⇒ ye^{-x} = x ꭍ e^{-x} dx - ꭍ[d(x)/dx * ꭍ e^{-x} dx]dx + C

⇒ ye^{-x} = -xe^{-x} - ꭍ(-e^{-x}) dx + C

⇒ ye^{-x} = -xe^{-x} + ꭍ e^{-x} dx + C

⇒ ye^{-x} = -xe^{-x} - e^{-x} + C

⇒ ye^{-x} = -e^{-x} (x + 1) + C

⇒ y = -(x + 1) + Ce^{x}

⇒ x + y + 1 = Ce^{x } …………..1

The curve passes through the origin.

⇒ 1 = Ce^{0}

⇒ C = 1

Put the value of C in equation 2, we get

x + y + 1 = e^{x}

Hence, the required equation of curve passing through the origin is x + y + 1 = e^{x}

**Question :17:
Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.**

**Answer :**

Let F (x, y) be the curve and let (x, y) be a point on the curve. The slope of the tangent to the

curve at (x, y) is dy/dx

According to the given information:

dy/dx + 5 = x + y

⇒ dy/dx - y = x – 5

This is a linear differential equation of the form:

dy/dx + py = Q, where p = -1 and Q = x - 5

Now, I.F = e^{ꭍp dy} = e^{ꭍ (-1) dx} = e^{-x}

The solution of the given differential equation is given by the relation,

y(I.F) = ꭍ(Q * I.F.) dx + C

⇒ y(I.F) = ꭍ(x – 5) * e^{-x} dx + C

⇒ ye^{-x} = (x – 5)ꭍ e^{-x} dx - ꭍ[d(x – 5)/dx * ꭍ e^{-x} dx]dx + C

⇒ ye^{-x} = -(x – 5)e^{-x} - ꭍ(-e^{-x}) dx + C

⇒ ye^{-x} = (5 - x)e^{-x} + ꭍ e^{-x} dx + C

⇒ ye^{-x} = (5 - x)e^{-x} - e^{-x} + C

⇒ ye^{-x} = (4 - x)e^{-x} + C

⇒ y = 4 - x + Ce^{x}

⇒ x + y - 4 = Ce^{x} …………….1

The curve passes through the point (0, 2).

⇒ 0 + 2 - 4 = Ce^{0}

⇒ C = -2

Put the value of C in equation 2, we get

x + y - 4 = -2e^{x}

⇒ y = 4 – x - 2e^{x}

This is the required equation of the curve.

**Question :18:
The integrating factor of the differential equation is x * dy/dx – y = 2x ^{2 }A. e^{–x} B. e^{–y} C. 1/x D. x**

**Answer :**

The given differential equation is:

x * dy/dx – y = 2x^{2}

⇒ dy/dx – y/x = 2x

This is a linear differential equation of the form:

This is a linear differential equation of the form:

dy/dx + py = Q, where p = -1/x and Q = 2x

Now, I.F = e^{ꭍp dy} = e^{ꭍ (-1/x) dx} = e^{-log(x)} = e^{log(x-1) }= x^{-1} = 1/x

Hence, the correct answer is option C.

**Question :19:
The integrating factor of the differential equation.
(1 - y**

^{2}) * dy/dx + yx = ay (-1< y < 1)

- 1/(y
^{2}- 1) B. 1/√(y^{2}- 1) C. 1/(1 - y^{2}) D. 1/√(1 - y^{2})

**Answer :**

The given differential equation is:

(1 - y^{2}) * dy/dx + yx = ay

⇒ dy/dx + yx/(1 - y^{2}) = ay/(1 - y^{2})

This is a linear differential equation of the form:

dy/dx + py = Q, where p = 1/(1 - y^{2}) and Q = ay/(1 - y^{2})

Now, I.F = e^{ꭍ}^{y/(1 - y2) dy} = e^{-log(1 – y2)/2} = e^{log[1/√(1 – y2)}} = 1/√(1 - y^{2})

Hence, the correct answer is option D.

**Back to Main List**

Frequently Viewed Pages

✤ Class 12 : Chemistry - Chapter : 3 : Electro Chemistry

✤ Class 12 : English Flamingo - Chapter No : 3 : Deep Water

✤ Class 12 : Mathmatics - Relation Functions : Exercise No : 4.4

✤ Class 12 : Mathmatics - Integrals : Exercise No : 7.3

✤ Class 12 : Hindi Aroh - Chapter 11 : Bhaktin

✤ Class 12 : English Vistas - Chapter 3 : The Enemy

✤ Class 12 : Macroeconomics : Chapter 3 : Money And Banking

✤ Class 12 : Mathmatics RD Sharma - Differentiation : Exercise No : 11.3

✤ Class 12 : Mathmatics RD Sharma - Indefinite Integrals : Exercise No : 19.28

✤ Class 12 : English Flamingo - Chapter 7 : The Interview

✤ Class 12 : Micro Economics - Chapter 5 : Market Equilibrium

✤ Class 12 : Physics - Chapter 12 : Atoms

✤ Class 12 : Physics - Chapter 9 : Ray Optics And Optical Instruments

✤ Class 12 : Chemistry - Chapter 11 : Alcohols Phenols And Ethers